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Clifford algebra description 
of non-Abelian gauge fields 
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Abstract. After a re-analysis o f  the Clifford algebra structure o f  exterior forms, we 
expound the Clifford algebra approach to non-Abelian gauge fields. This method is 
then extended to the geometn'cal theory o f  gauge fields on principal fibre bundles. A 
generalised Lorentz condition arises as a condition o f  compatibility between local and 
global treatment. 

1. INTRODUCTION 

Clifford algebras were discovered in the second half of the nineteenth century as 
a generalisation of the quatemion algebra [1] [2], but only about fifty years later, when 
Dirac wrote his famous equation of the relativistic electron, did they became an essential 
tool for the description of the physical world. 

As all fundamental particles (quarks and leptons) are generally supposed to have spin 
1/2 [3], it is a remarkable fact that gauge fields interact with matter substantially only 
via the combination Au~U (Au  being the potentials and ,,/u the Dirac matrices): the 
physics of fundamental particles seems to suggest Clifford algebra as the natural math- 
ematical tool for the description of gauge fields. 

It is classical that, exploiting the linear isomorphism between Clifford and exterior 
algebras [4] and using K~ihler operator ~ := d - 8  [5], it is possible to synthetize Maxwell 
equations in a unique relation between Clifford numbers [6, 7, 8]. In the present paper, 
we give a generalisation of such a local treatment to non-Abelian gauge fields [9], and 
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then we extend it to the geometrical theory of these fields on principal fibre bundles. 

As pointed out by a referee, a brief discussion of the local theory was already given by 

Tucker [10]. 

First (sect.2) we analyse the Clifford algebra structure of exterior algebra, obtaining 

that a major features of Clifford product is the following one: the adjoint of the oper- 

ator of left multiplication by a multivector a is the operator of left multiplication by 

a t (where the simbol ? denotes the main antiautomorphism of the exterior algebra). 

Moreover, we show that such a feature pertains also to the Clifford multiplication of Lie 

algebra valued forms, which is needed in order to describe non-Abelian gauge fields, 

In section 3 we recall the local theory of gauge fields in terms of Clifford algebra, 

then we examine the behaviour of the theory under gauge transformations. 

In section 4 we give the Clifford algebra formulation of the geometrical theory of 

gauge fields as differential forms on a principal fibre bundle P .  We use the usual 

Kaluza-Klein metric of P in order to define the Clifford product of forms and the K~aler 

operator of P .  The eovariant K~der  operator is then defined as its ~horizontal part>>. 

Furthermore, we write the field equation in terms of Clifford algebra and we show that 

the theory of sect.3 is just the local version of such a geometrical theory. 

Finally we analyse the action of the covariant K[ihler operator on the connection form 

to, obtaining that the pull back, via a local section or, of this action to the base manifold 

M coincides with the action of the covariant Kiihler operator of M if and only if or*to 

satisfies a generalised Lorentz condition. 

2. G E O M E T R I C  ALGEBRAS 

Let V be a vector space and g a scalar product in it; we shall admit also the case 

of g non definite. By A(V)  we denote the exterior algebra of V .  We recall that the 

main antiautomorphism t of A ( V )  is defined by 

1) a t = a if a E A° (V)  • A l ( v ) ,  

2) ( a A b )  t = b t A a  t .  
We introduce the operator I~ : A ( v )  ~ A(V)  of left inner multiplication by a 

vector u E V as the adjoint of the operator E~ of left exterior multiplication by u : 

(I) ~(a,1~b) = ~(E~a,b) = ~(u^a,b), V,~,b e A(v), 

where ~ is the metric of A(V) induced by 9 • By virtue of the non degeneracy of 9 

this equation defines uniquely I u ; in agreement with the usual notations (see e.g. ref. 

[7]), we shall also write u • b for .rb. It is well known that, if we denote by J the 

isomorphism of A(V)  with A(V*) induced by the metric, and with / the usual 

interior product of a vector with a form we have 

I~a = J-1(u._l(Ja)) . 
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Moreover, it is easy to prove that I~ is the unique antiderivation of A(V)  having the 

property that 

(2) I,,w = 9(u, w) , 

foraU u, w E V . 

It is possible to express the inner product in terms of the usual operations on exterior 

algebras; if u E V and a E A ' ( V )  wehave 

(3) u .  a = ( - 1 ) l g l ( - 1 )  (a - l ) ("-° )  * ( u  A *a)  , 

where Igl is the determinant of the metric of V ,  n is the dimension of V ,  and • 

the Hodge duality operator (in order to prove this relation it is enough to evaluate the 

expression ~( b, *( u A *a) ). 

The operation of inner multiplication can be extended to muhivectors: we define a. b 

according to 

.~(a t Ac, b) = ~(c ,a -b)  VcE A ( v )  ; 

then, if a E AT(V), b E A°(V),  with s > r ,  the following equation holds 

a .  b = ( -1 ) l g l ( -1 )  ~] '~ ' ( -1)  ('-')('v-~) • (a  A *b) . 

Now we introduce the operator L~ of left Clifford or geometric mul@lication by a 

vector u E V as 

(4) Lu := E~, + I u . 

We shall write briefly ua for Lua.  From our construction it is obvious that L~ is a 

selfadjoint operator. 

When combined via the Clifford product, the vectors generate the whole A ( v )  ; 

therefore we can use this property to extend Clifford multiplication to an associative 

product of multivectors obtaining the usual Clifford multiplication of multivectors (see 

e.g. ref. [4]). The Clifford product of multivectors will always be denoted by juxtapo- 

sition of the factors. 
It is very easy m see that, as was pointed out by K~le r  [11], one has 

(5) ~(ab, c) = ~(b,a?c) . 

It is clear that in the present context the geometric product is just  the simplest modifica- 

tion o f  the extenor product, which has the associadve property and satisfies eq. (5). 



4 D. BAMBUSI 

Notice that by our procedure it is possible to define a geometric product in every 

Z+ -graded, associative algebra, admitting a set of generators of  degree one, and whose 

underlying vector space is endowed with a metric. It is easy to see that this geometric 

product is always such that the scalar part of  a t a is the ~squam of the norm>> of a .  

In general it is not trivial to generalise this procedure to other algebras, but it is inter- 

esting to note that Lie algebra, one of the most used algebras in physics, is in some sense 

a <<geometric algebra>>. In fact, if g is a semisimple Lie algebra and k its Killing-Cartan 

form (that by Cartan's theorem is nondegenerate), then one has [12] 

(6) l e ( [x , y ] , z )  = k ( y , [ - z , z ] )  V~:,y, z e g  ; 

since the operation x ~ - x  is an antiautomorphism of g ,  eq. (6) is a generalisation of 

eq. (5) to g and shows that the Lie algebra product has the main feature of the geometric 

product. 

Consider now the dual space V* of V ,  and the algebra A( V*, g) , of g - valued 

multicovectors on V : 

A(v ' ,  g) _- A(v ' )  @ g. 

It is well known that the exterior product of two muhicovectors of this space can be 

defined by bilinear extension of the following product of decomposable multicovectors: 

t~A/9=(a®x) A(b®y) :=(aAb)®[x,y], 

where or,/3 e A(V*, g)  a, b e A( v * ) ,  and x, y 6 Q. 
In an analogous way we can define the geometric product of two muhicovectors as 

the bilinear extension of the following product: 

(7) a/3 = ( a ®  x ) ( b ®  y) := (ab) ® [x ,y]  

If  we introduce in A ( V * , g )  the metric (leg) induced by ~ and le, and the main 

antiautomorphism induced by the antiautomorphisms of A(V*) and g ,  namely the 

linear extensions of 

(leg) (o~, 13) = ( leg) ( (a  ® x) ,  (b ® y) )  : = ~(a,  b )k (x ,  y) , 

a t = ( a ® x )  t : = a  t®(-x), 

respectively, we obtain that (7) really defines a geometric product, i.e., the relation 

(kg) = (kg)(e, 
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holds for all or, ~, 0 E A( V*, ~ ) .  Notice that, if we put 

o~.f~ := ( a . t , )  ® [ z , V ]  , 

then 

( kg ) (  o, ^ 0 ,~)  = ( kg) (  O, e,t . # ) .  

3. GAUGE FIELDS, LOCAL THEORY 

Let M be a four dimensional pseudo-Riemannian manifold, and A ( T * M )  the ex- 

terior bundle of M .  The Clifford product of two multicovectors in A(T~ M) will still 

be denoted by juxtaposition. The Kiihler operator on the forms of M is then defined as 

r(A(r'u)) r(A(r'u)) 
a ~--~ f~,a := da - Sa , 

where F ( A ( T * M ) )  denotes the space of the sections of A ( T * M ) ,  d is the exterior 

differential and 5 its adjoint operator ( 5 := ( - 1 ) l g f .  d* ). 

If  we introduce a local frame (eU)u=l,2,3, 4 , of F ( T * M )  and its dual frame 

(eu)t~=l,2,3,a , then using eq. (4) it is easy to see that the action of i~ on a form a is 

given by [11] 

(8) •a = e~(V%a) . 

(the Einstein summation convention has been used) where Ve, is the covariant deriva- 

tive with respect to the Levi-Civita connection, in the direction % .  We point out that the 

existence of K~fier operator deos not require any topological condition on the manifold 

M ; in fact this operator is build up just using the exterior differential and the exterior 

codifferential, which exist on every pseudo-Riemannian manifold. 

We turn now to gauge fields. It is well known that the electromagnetic field can be 

represented locally by a 2 - form F on an appropriate open subset U of space-time 

M and that Maxwell equations can be written as 

(9) t~F = - j ,  

where j is the 1 - form representing the electromagnectic current. In fact we can split 

(9) into its vector and 3 - form parts obtaining the usual Maxwell equations in terms 

of differential forms: 

d F = O  , 

~ F =  ] .  
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We point out that, if in relation (9) we substitute the 1-form j with a form ~ 6 r ' (A 1 
( T ' U )  + A 3 ( T ' U ) ) ,  we obtain a theory with magnetic monopoles [13]. 

In general, a gauge field can be represented locally by a section of the fibre bundle 

A(T*U,~;) of ~; -valued forms on U C M ,  where ~; is the Lie algebra of the gauge 

group; it is possible to exploit the geometric product of the space of Lie-algebra valued 

forms in order to write the field equation of a non-Abelian gauge field in terms of Clifford 
algebra [10]. Indeed, consider the local covariant K~ihleroperator~ : 

- .  

e ~ g~,~ := ~o~ + A ~ ,  

where A is the 1 - form representing the potential of the gauge field, and t / is  here the 

operator induced on F ( A(T*U, ~) ) by the Kiihler operator, namely, it is the additive 

extension of the following operator acting on decomposable forms: t/(a ® a:) := (l~a) ® 
~.  Notice that the restriction of g) to compactly supported sections is skewsymmetric. 

The field equations for the 1 - form F representing the field strength of the gauge 

field are given by 

(10) ~ F =  - j ,  

where j 6 F ( A I ( T ' U , ~ ; ) )  is the current one-form. By the way, we point out that, in 
order to obtain a theory with non-Abelian magnetic monopoles, it is enough to suppose 

that j 6 F(AI(T*U,~) + A3(T'U,g)) • 
Using (4), it easy to see that equation (10) is equivalent to 

(II) DF= 0 

(12) 6AF = j .  

where we have denoted by D F  := dF  + A A F the covariant differential of F and by 
8AF := 6F - A.  F the covariant codifferential. Equation (11) represents the ~Bianchi 

identity>> satisfied by F ,  while (12) is the inhomogeneous field equation. 

Notice that, applying ~ to (10), one has 

(~)2F =~/; 

the scalar part of this equation is 

~Aj = 0 , 
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namely, the equation of current conservation. 

Moreover, if, as is natural in this context, in order to satisfy (11) we put 

I~A = F , 

the generalised Lorentz condition 

(13) ~AA = 0 

follows. 

Now we shall examine the behavior of this theory under gauge transformation; for 

simplicity we shall suppose that the group G is a matrix group (in order to generalise 

what follows to a generic Lie group it would be enough just to use a little heavier no- 

tation) and, in order to clarify the situation we shall use explicitly a coordinate frame. 

Under gauge transformation the potentials transform according to 

A' = r - l A ' r +  r - l d r .  

where r : U --4 G is the element by which the gauge transformation is performed, 

and we have written dr  for r . .  The field strength transforms according to the adjoint 

representation of G : 

F t = r - l F r .  

Then we have 

~ 'F '  = dxuVa/a~,,(r-l Fr) + A'F' = 

= r - l l l F r +  r - I A F r _  d, xU(dxUA dx p) 

® [r-10~r ,  F'p] + r - l d r F  ' =  r - l ( ~ F ) r .  

Notice that, if we want that ~ ' A  t = F r , we have to restrict the allowed gauge transfor- 

mation in such a way that A' satisfies (13). 

4. GAUGE FIELDS, GLOBAL THEORY 

We recall that, from the geometrical point of view, the gauge field strength is a 2 - 

form on a principal fibre bundle P having a compact, semisimple Lie group G as 

structural group and the space-time M as base manifold; moreover, P is endowed 

with a connection form to [ 14]. Here we shall extend the Clifford algebra treatment of  

gauge field to this geometrical theory and we shall discuss some consequences. 
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The metric h of P is defined by 

h v ( X , Y )  = g ,~ (v ) (~ .X ,~ .Y)  + k ( w p ( X ) , w ~ ( Y ) )  , 

where k is the Killing Caftan metric of G ,  ~ the canonical projection of P ,  and 

X , Y  E T~P [15] [16]. 

Now, acting exactly in the same way as in section 2, we can define the geometric 

multiplication of forms, and extend this operation to ~ - valued exterior forms on P .  

Remark that the Clifford algebra structure of A ( T * P )  (and of A(T*P,  ~) ) depends 

on the connection throught the metric. 

Since the horizontal and vertical subspaces are perpendicular, we have that, if a 1 and 

a 2 are horizontal (vertical) muhicovectors, namely a i (Xl , . . .  , Xk~) ~- 0 when one of 

the X t E T P  is vertical (horizontal), then ala  2 too is horizontal (vertical); on the 

other side, if a I is horizontal and a 2 is vertical, (or viceversa), one has 

ala  2 = a I /~ a 2 . 

Consider now the fibre bundle A H ( T * P )  of the horizontal forms on P ; we remark 

that, not only the set of forms constituting this space is independent of the connection, 

but also its Clifford Mgebra structure is independent o f  the connection. In fact, by virtue 

of the definition of h ,  An  (7'~ P)  is canonically isomorphic to A(T~(v) M ) ,  as a metn'c 

space and therefore also as a Clifford algebra. Moreover, since for every local section 

¢r of P the restriction of the pull-back application to this space, cr*lA tr.P~, is an 

isometry, it is clear that it is also a Clifford algebra homomorphism. On ~ e  other side, 

if a is a vertical form, it is not tree that (or*a) (or*b) = (r*(ab). 

The K~aler operator ff of P is defined according to 

~:=d-5; 

then, in every reference frame (XA)A=I,...,a+,~, it is given by 

= dx~Vala~A , 

where V is the covariant derivative with respect to the Levi Civita connection of h .  

The covariaut Kiihler operator on A(T*P,  g)  can be defined as 

v :  r r 
(14) 

where the index H denotes the operation of taking the horizontal part. We have 

~ o t  = ( do l )  H - -  ( ~ )  H = T)Ce - -  ~w Ot , 
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where 7) is the usual covariant differential, and 6'~tr := (dfq) n the covariant codiffer- 

ential; notice that 6~:/+ , 7 ) . .  Now we study some properties of these operators. 

First we observe that the restriction o f ~  to the space of compactly supported sections 

of AH(T*P, ~) (horizontal ~ - valued forms) is skewsymmetric; in fact, if or, /3 are 

compactly supported forms of F (An (T'P, ~)), we have 

fp( kh)(~ot,/3)#p = fp( kh)(cf~r,/3)#p = fp( kh)( tr,---~/3)#p , 

where (kh) is the metric induced by h and k on A(T*P,Q), and #v is thevolume 

form of P induced by h.  Moreover, the restriction of 6 W to compactly supported 

sections of AH(T*P, g) is the adjoint operator of the restriction of 7) to the same 

space: 

(15) 

= = 

= fp(kh)(a,6"/3)l~p, 

for all compactly supported sections oe,/3 of AH(T*P,~). Notice that, in order to 
obtain relation (15), it is enough to suppose that only one of the forms t~ and /3 has 

compact support. 

Let us consider the space FAg(A(T*P,G)) of the forms tr E F(AH(T*P,9)) 
that satisfy 

(16) R~a = Ado-,,a ; 

since the connection form too satisfies relation (16), this space is invariant under the 

action of 9 -  

We shall show that for c~ E FAa(A(T*P ,Q) ) ,  we have 

(17) o*(~o~) = ~ ( a * a )  

for all local section a : U --0 P (U C M ) .  First we recall that, if ot E FAa(A 
(T'P, ~ ) ) ,  we have 7)c~ = da  + to A ~ and therefore 

a*(7)o0 = D(cr*o) , 

where the covariant derivative ~ D ~ iscalculated with respect to the potential A = a ' t o .  

Let /3 be an dement of FAd(A(T*P,~))  with compact support contained in 

~r-l(U) ; then, since a* is an isometry from the space AH(T~*(:oP,~) to the space 
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A(7';  M, ~ ) ,  and the functions (kh) (8~'a, #) and (kh) (o~,/gB) 
the fiber of  P ,  we have 

are constants along 

fu  1 f~ ( kh)( ~tO ot,~ff)lZ P = (kg)  ( a'(/5~°ot), cr'~)/z u = Vol (G---'~ -'(o') 

_ 1 f (kh)(o~,l)B)#p = 
VoI(G)  J ,-~(m 

.-- . . ) . = ' a ) . u  . 

where /~u is the volume form of M and Vol (G)  the volume of  the structure group; 

then (17) follows. 

Let us consider the action of  the covariant K~hler operator on vertical forms satisfying 

condition (16); we show below that 1~c~ =/~c~. 

Notice that, since a satisfies equation (16), we have (8o0 tt E F x a ( A ( T * P , ~ ) )  • 

Choosing a basis ((o)°=1...,~ in ~ ,  we have a = ol ° ® ~o, with t~ ° E F ( A ( T ' P ) )  • If  

fl = ff~ ® (° is a compactly supported form of  FAct(A(T*P,~)), then 

= fp(kh)(r~,dfl)IZp , 

where k,b = k(~o, ~b), therefore we obtain 

fp(kh)((8oOH,3)#p = fe(kh)(a, V3-~, A/~)#p = 

= fp(kh)(ol,-oJ A3)#p = fp(kh)(~ .o~,B)#p 

and so, by virtue of  the arbitrariness o f /~  E Fx,t( A(T*  P, ~) ) , we obtain 

(18) ~'o~ = (o~- ~ ) ~  = 0 . 

In particular, we have 

(19) 6'°to = 0 . 

Now we come to gauge fields. It is well known that the field strength is mathemati- 

cally represented by a horizontal 2 - form 3 r E F A d ( A ( T * P , ~ ) ) ;  then the equations 

of  motion for ~ can be written in the form 

(20) I~.T" = - 5  r , 
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where 5r is the 1 - form representing the current. Equation(20) can be split into 

(21) D . r  = 0 ,  

11 

(22) ,Sw.~" = ~7. 

The first of  these equatiom represents the Bianchi identity for ,~'. Equation (17) shows 

that this is exactly the global version o f  the local theory developed in the previous section. 

We remark that, in virtue of (19), eq. (21) can be solved by putting 

. ~  - - ~ 0 2  . 

We point out that the generalised Lorentz condition considered in choosing the gauge 

becomes here a compatibility condition between the covariant K ~ l e r  derivative of  the 

connection and its local representations; in fact, one has that 

o"(pw) = ~(a*w) 

holds only if er is such that A = er*to satisfies the generalised Lorentz condition (13). 

Finally consider a vertical automorphism f of  the bundle P ,  namely a gauge trans- 

formation; since equation (19) is a consequence of the verticality of  the connection form, 

it is satisfied also by the transformed connection f ' to  ; but, in general, we have that 

er*(f*to) does not satisfy the Lorentz condition even if cr*w does. The theory on the 

fibre bundle is thus invariant under the whole gauge group, while the natural invariance 

group of the theory on the basis is the subgroup of the gauge group leaving (13) invariant. 
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